Using a Non-Commutative Bernstein Bound to Approximate Some Matrix Algorithms in the Spectral Norm

نویسنده

  • Malik Magdon-Ismail
چکیده

We focus on row sampling based approximations for matrix algorithms, in particular matrix multipication, sparse matrix reconstruction, and l2 regression. For A ∈ R (m points in d ≪ m dimensions), and appropriate row-sampling probabilities, which typically depend on the norms of the rows of the m × d left singular matrix of A (the leverage scores), we give row-sampling algorithms with linear (up to polylog factors) dependence on the stable rank of A. This result is achieved through the application of non-commutative Bernstein bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Fractional Optimal Control Problems with Noise Function Using the Bernstein Functions

This paper presents a numerical solution of a class of fractional optimal control problems (FOCPs) in a bounded domain having a noise function by the spectral Ritz method‎. ‎The Bernstein polynomials with the fractional operational matrix are applied to approximate the unknown functions‎. ‎By substituting these estimated functions into the cost functional‎, ‎an unconstrained nonlinear optimizat...

متن کامل

New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative

In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...

متن کامل

Approximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method

This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...

متن کامل

Row Sampling for Matrix Algorithms via a Non-Commutative Bernstein Bound

We focus the use of row sampling for approximating matrix algorithms. We give applications to matrix multipication; sparse matrix reconstruction; and, l2 regression. For a matrix A ∈ R m×d which represents m points in d ≪ m dimensions, all of these tasks can be achieved in O(md) via the singular value decomposition (SVD). For appropriate row-sampling probabilities (which typically depend on the...

متن کامل

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1103.5453  شماره 

صفحات  -

تاریخ انتشار 2011